AI独立解决三十年数学问题的变体,陶哲轩分享自动化研究经验
![]()
机器之心报道
机器之心编辑部
刚刚,独立动化Erdos 问题 #124 的解决经验一个弱化版本被证明。
这个问题自 1984 年在《算术杂志》上发表的年数南平市某某化工业务部论文 「整数幂集的完备序列」 中提出以来,近 30 年一直悬而未决
证明该问题的学问轩分享自是普林斯顿大学数学博士 Boris Alexeev ,使用了来自 Harmonic 的题的陶哲数学 AI 智能体 Aristotle运行了这个问题,智能体最近更新了更强的变体推理能力和自然语言界面。
关于该问题的研究一些报道都声称AI独立解决了该问题的完整版本,事实却并非如此,独立动化产生了很多争议。解决经验Boris Alexeev 为此进行了修正:
![]()
在 Formal Conjectures 项目中,年数该猜想有一个正式声明。学问轩分享自不幸的题的陶哲南平市某某化工业务部是,该声明中有一个拼写错误,变体其中注释在显示式方程中显示为 「≥1」 ,研究而相应的独立动化 Lean 声明为 「= 1」。(这使得声明变弱了。)因此,我也修正了这个问题,并包含了对修正后声明的证明。最后,我删除了我认为是不必要的声明方面,Aristotle 也证明了这一点。
正如 DesmondWeisenberg 所提到的,存在一个涉及幂次 1(这里对应个位数)的问题,这意味着 [BEGL96] 中的猜想与此不同。我相信 [Er97] 中的版本与这里的陈述相符,部分原因在于它缺少 [BEGL96] 中明显必要的最大公约数条件。我目前无法获取 [Er97e] 来检查其中的陈述。考虑到Aristotle 的成就,这个问题如此微妙,实在不幸!
尽管如此,数学智能体独立地证明了 Erdos 问题#124的较简单版本,仍然表现了令人惊讶的数学证明能力。
Erdos 问题 #124 内容如下图所示,由于该证明存在微妙的错误,目前仍是一个开放问题。
![]()
- Erdos 问题 #124 链接:https://www.erdosproblems.com/forum/thread/124
数学 AI 智能体 Aristotle 是一个一个用于自动形式化和形式验证的 API。根据 Harmonic 的介绍,其具备利用 IMO 金牌级引擎解决最复杂的推理问题的能力;可以自动将英语陈述和证明转换为经过验证的 Lean4 证明;能够无缝集成到项目中,自动利用用户的整个定理库和定义、依赖项以及 Mathlib。
![]()
- Aristotle 链接:https://aristotle.harmonic.fun/
在 Erdos 问题 #124 的讨论中,tsaf 简要介绍了 Aristotle 针对该问题的证明方法,称其「出奇的简单」
![]()
有关详细的证明过程,感兴趣的读者可以参考:
- https://github.com/plby/lean-proofs/blob/main/ErdosProblems/Erdos124.md
对于 AI 独立进行完整的数学难题的证明,陶哲轩进行了深度的关注。在该问题下,也能看到他的评论。
![]()
陶哲轩对于 AI 工具在数学领域的观点仍然一以贯之,他认为像许多其他真实世界中的分布一样,数学中的未解决问题也呈现出典型的「长尾」结构
在数学的未解决问题中有很多没有得到关注的相对容易的问题,借助人工智能的强大自动化能力和推理能力去规模化地尝试攻克这些问题,就会有许多「低垂的果实」唾手可得。
![]()
陶哲轩在去年运行 Equational Theories Project 时亲眼见证了这一点。
这个项目攻击了普遍代数中 2200 万个蕴含式。利用简单的自动化方法的最初几轮扫描,在几天内就解决了其中相当大的一部分;随后又使用越来越复杂的方法,逐步攻克那些在早期扫描中顽固抵抗的剩余实例。最后的少数几个蕴含式则花费了数月的人类努力才最终解决。
陶哲轩在这个项目中取得了大规模自动化数学研究的宝贵经验,他以个人日志的形式完整记录了研究的详细过程,方法,结果和个人的思考。
- 日志链接:https://github.com/teorth/equational_theories/wiki/Terence-Tao's-personal-log
Erdos 问题网站也是类似的例子。该网站目前收录了 1108 个在至少一篇埃尔德什论文中提出过的问题;其中当然包含一些极其困难的经典难题,但也有大量更偏门的问题,甚至连 Erdos 本人都没怎么关注过。
与 Equational Theories 的经验类似,陶哲轩现在也开始采用自动化方法,集中清理掉最底层的「低垂果实」。
几周前,网站上一批仍被标注为未解决的问题突然被划为「已解决」:AI 驱动的文献搜索工具发现,它们的解答其实早已存在于文献中。正在研究这些问题的数学家们也结合使用 AI 工具和形式化证明助手,来用 Lean 验证已有证明、生成这些问题关联的整数序列项,或补全某些方案中缺失的推理步骤。
陶哲轩认为,Erdos 问题#124的证明属于另一类「低垂果实」,是由于描述中的技术性疏漏,而变得意外容易解决的问题。
具体来说,Erdos 问题 #124 在三篇论文中被提出过,但其中两篇漏掉了一个关键假设,导致问题在那两种表述下直接成为一个已知结果(Brown 判别法)的推论。然而,这一点直到 Boris Alexeev 使用 Aristotle 工具处理该问题时才被发现。Aristotle 在数小时内就自主找到并(用 Lean)形式化了该弱化版本的解答。
目前,研究者正系统性地扫描网站上的剩余问题,以寻找更多类似的误述或快速的解决方法。这些努力短期内仍主要集中在「长尾」的最末端。
然而,这已经显示出自动化工具能力的不断增强,并在另一层面上帮助了研究这些问题的人类数学家:通过清除最容易的部分,使真正困难的问题更加清晰地呈现出来。
或许,从 AI 能够独立解决数学问题开始,我们就已站在数学领域深刻变革的边缘。
数学领域 Vibe 证明的时代已经悄然而至。
(责任编辑:探索)
-
随着以人工智能为代表的新一轮科技革命和产业变革深入发展,数据作为关键生产要素的战略价值愈加凸显。数据与智能的深度融合,不仅是催生新产业、新模式、新动能的重要力量,更是我国在全球数字经济竞争中构筑新优势
...[详细]
-
12月5日,中国证监会发布《上市公司监督管理条例公开征求意见稿)》,这意味着我国将迎来首部专门的上市公司监管行政法规。 征求意见稿围绕防风险、强监管、促上市公司高质量发展的目标,以夯实监管执法及
...[详细]
-
“高跟鞋可以让你征服世界,可平底鞋可以带你走遍世界。”这话用在“三大丑鞋”之一的雪地靴身上也很适合。这个冬天,越来越多的人放弃精致的高跟鞋,高跟靴,转头选择了舒适温暖的雪地靴。原本对雪地靴的质疑怀疑,
...[详细]
-
晚上好啊。我们几乎每年冬 天都会聊一下裙子的搭配。我猜很多人也和我一样,买了很多裙子,也不希望一到冬天就全收起来。其实啊,漂亮小裙子也一定是春夏的专属呢,有些裙子的保暖性也被我们低估了。比如,防风厚实
...[详细]
-
机器之心报道机器之心编辑部刚刚,Erdos 问题 #124 的一个弱化版本被证明。这个问题自 1984 年在《算术杂志》上发表的论文 「整数幂集的完备序列」 中提出以来,近 30 年一直悬而未决证明该
...[详细]
-
近视就不会老花吗?哪些人群老花更早?医生解答2025-12-05 10:52:56 来源:央视新闻客户端 作
...[详细]
-
12月5日,外交部发言人林剑主持例行记者会。 有记者提问,据报道,赖清德日前以预录制视频的形式参加《纽约时报》“交易录峰会”,并就台海局势大放厥词。中方对此有何评论?林剑资料图。图源:外交部网站
...[详细]
-
来源:中国新闻周刊 12月4日,女星郑秀文在社交账号上发长文回应香港火灾捐款质疑,全文如下: 这段文字并非要挑起对骂。只是道出内心感受和说清事实。是平心气和的表达。 捐款:最重贴在于能够帮助
...[详细]
-
12月1日消息,据悉,在11月29日于郑州比亚迪赛车场举行的“腾势之夜”活动上,腾势D9完成了第30万辆车的交付,车主为“九球天后”潘晓婷。此次活动在线上有超过40万名“势友”观看。据了解,腾势D9此
...[详细]
-
总有人说“五十岁就该有五十岁的样子”,可“样子”从不是松垮的旧衣服、暗沉的老花色,而是历经岁月沉淀后的从容与精致。其实50+女性的穿搭,不用刻意模仿年轻人的潮流,也不用默认穿得朴素就好,选对款式、找对
...[详细]

“皮套人”,却在假装自己不是人